Multi-Objective Hybrid Evolutionary Optimization with Automatic Switching Among Constituent Algorithms
نویسندگان
چکیده
In this work, a multi-objective hybrid optimizer is presented. The optimizer uses several multi-objective evolutionary optimization algorithms and orchestrates the application of these algorithms to multi-objective optimization problems, using an automatic internal switching algorithm. The switching algorithm is designed to favor those search algorithms that quickly improve the Pareto approximation and grades improvements using five criteria. A thorough testing of the reliability and accuracy of the multi-objective hybrid optimizer against a number of prominent multi-objective optimization algorithms and one hybrid optimizer confirmed that multi-objective hybrid optimizer performs reliably and accurately.
منابع مشابه
A Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملA Multi-objective Evolutionary Hybrid Optimizer
A new hybrid multi-objective, multivariable optimizer utilizing Strength Pareto Evolutionary Algorithm (SPEA), Non-dominated Sorting Differential Evolution (NSDE), and Multi-Objective Particle Swarm (MOPSO) has been created and tested. The optimizer features automatic switching among these algorithms to expedite the convergence of the optimal Pareto front in the objective function(s) space. The...
متن کاملMulti-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept
This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...
متن کامل